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Hexachords and Their Trichordal Generators: An Introduction

Steve Rouse

In this article, bits of analytically and compositionally useful
information from numerous sources' are brought together with the goal of
providing a clear, concise picture of some fundamental aspects of the

1. The following sources contain lists related to those found here, as
well as other relevant information: Allen Forte, "A Theory of Set
Complexes for Music," Journal of Music Theory 8/2 (1964): 136-83, The
Structure of Atonal Music (New Haven: Yale University, 1973); Howard
Hanson, Harmonic Materials of Modern Music (New York: Appleton-Century-
Crofts, 1960); Josef Hauer, vom Melos zur Pauke (Vienna: Universal
Edition, 1925) (for a discussion of Hauer's tropes see: Richmond Browne,
Review of The Structure of Atonal Music by Allen Forte, JMT 18/2 (1974):
390-409); Donald Martino, "The Source Set and its Aggregate Formations,"
JMT 5/2 (1961): 224-73, addendum in JMT 6/2 (1962): 322-23; George
Perle, serial Composition and Atonality (Berkeley: University of
California, 1962); John Rahn, Basic Atonal Theory (New York: Longman,
1980) .

The following sources also contain information relevant to the
present discussion: Milton Babbitt, "Some Aspects of Twelve-Tone
Composition," The Score and I1.M.A. Magazine 12 (1955): 53-61, "Twelve-
Tone Invariants as Compositional Determinants," Musical Quarterly 46
(1960): 246-59, reprinted in problems of Modern Music, ed. Paul Henry
Lang (New York: Norton, 1962), "Set Structure as a Compositional
Determinant,” JMT 5/2 (1961): 72-94, reprinted in perspectives on
Contemporary Music Theory, ed. Benjamin Boretz and Edward Cone (New
york: Norton, 1972), "Since Schoenberg,” perspectives of New Music 12/1-
2 (1973-74): 3-28; Hubert S. Howe, Jr., "Some Combinational Properties
of pitch Structures,” PNM 4/1 (1965): 45-61; Andrew Mead, "pedagogically
Speaking: A Practical Method for Dealing with Unordered Pitch-Class
Collections,"” In Theory Only 7/5-6 (1984): 54-66; Robert D. Morris, "set
Groups, Complementation, and Mappings among Pitch-Class Sets," JMT 26
(1982): 101-144; Robert Morris and Daniel Starr, "A General Theory of
Combinatoriality and the Aggregate (part I)," PNM 16/1 (1977): 3-35, "A
General Theory of Combinatoriality and the Aggregate (Part II)," PNM
16/2 (1978): 50-84.

Readers familiar with the Martino article will recognize that
portions of it have been used as a starting point and/or model for the
present paper, There are a few problems concerning the information that
Martino presents about the hexachords and their trichordal generators.
Since his article was written prior to a general acceptance of Forte's
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aggregate/hexachord/trichord interrelationship.2 The organization is as
follows: (1) tables and graphs that catalog hexachord/trichord
relationships are presented and explained, (2) some suggestions are
offered for use of this information, and (3) a short discussion of the
identity/complementation properties of the hexachords is included. Some
readers will no doubt find the suggestions and the examples illustrating
them familiar territory, but may view the various tables and graphs as
handy references. In order to keep the exposition free of sidetracking
explanations, a section of definitions of some basic terms and concepts
is included at the end.

Tables_l and 2: Format

Each hexachord can be divided into 10 pairs of trichords.> A pair
of the same class, [0,1,2] + [0,1,2] for example, is called a single
generator; a pair of dissimilar class, such as [0,1,2] + [0,1,5], is
called a dual generator.4 Table 1 lists each of the 50 unique
hexachords and their respective trichordal generators.” The notation

labels for set-types, or collection classes, some of Martino's labels
are unique to his discussion and therefore less familiar., 1In
particular, the omission of Z-pair complements is confusing, especially
in the cataloging of trichordal generators.

2. I would like to acknowledge Andrew Mead for his guidance in
theoretical matters for some time prior to and during the writing of
this article,

3. For example, with [0,1,2,3,4,5]:
18, i2413,4.5) {0,2,33+{1,4,5}
{0,1,3}+{2,4,5}

§0,2,4}+{1,3,5}
{0,1,4}+{2,3,5} 5,58 0153
{0,1,5}+{2,3,4} = ik i

4 + 3 + 2 + 1 = 10

§0,3,43+{1,2,5}
{0,3,5}+{1,2,4}

Slo,z..s}+{1,2,3}

4. Single generator and dual generator are terms from Martino, "Source
Sets." The term "collection class" is equivalent to Forte's "set type."

Be The format for Table 1 is derived from Martino's hexachord table
("Source sets," p. 229). The prime forms of the hexachords and
trichords, as well as the interval vectors of the hexachords, are taken
from Forte, "A Theory of Set Complexes for Music,” In the tables and
graphs of the present paper, the brackets and commas normally used in
the notation of collection classes are omitted, as is the prefix number
that designates the size or number of elements in a collection class.
Brackets, commas, and prefix number are used in labeling hexachords in
the body of the paper. 1In the interest of immediacy Forte's collection
class numbers for the trichords are not used.
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used for the trichords is that of Martino: 12 = [0,1,2]; the 0, the
commas, and the brackets are omitted to conserve space and to facilitate
scanning the lists. The order in which the generators are listed is
organized as follows: for single generators the criterion for
"firstness" is the smaller generator; for dual generators the criteria
for "firstness" are: (1) the smaller first half and then (2) the smaller
second half, The letters in square brackets to the left of the
hexachord label the all-combinatorial hexachords.® The angle brackets
that normally enclose interval vectors, i.e., <5,4,3,2,1,0>, and the
commas that separate ics have been omitted. The superscripts indicate
that a generator can be extracted more than once from a hexachord, For
example, 6-7 lists the single generator 152, which means that this
generator--[(0,1,5] + [0,1,5]--can be found two distinct ways (i.e., not
PCc equivalent) within any classic transformation of 6-7. For example,
{0,1,2,6,7,8}y= {1,2,6} + {7,8,0}and {8,0,1} + {2,6,7 L

In Table 2 the information in Table 1 is presented from the point
of view of the trichordal generators; the 78 possible® generators are
listed® along with the hexachords that each will produce. The
superscripts indicate that for any single manifestation of a hexachord,
the generator in question can be extracted more than once (in other
words, the superscripts provide the same information in both Tables 1
and 2). Z-pairs that occur in the list for any one generator are
underlined.

Graph X

Graph X provides yet another format for the information in Tables 1
and 2: a graph with the hexachords as the horizontal axis, and the
trichordal generators as the vertical axis. The point of reference for
Table 1 was the hexachord, and that for Table 2 the trichordal
generator; Graph X combines these perspectives in a 'non-listing'
representation.

All the properties of Tables 1 and 2 and Graph X are preserved undey
the cycle of fourths transform.'? Table 3 lists the M5 or cycle of

6. The designations A, B, C, etc,, are from Babbitt, "Some Aspects."

7e The classic transformations of pitch, called twelve-tone operators,
or TTOs, are: transposition, order reversal or inversion, pitch
inversion, and combinations of these. See Rahn, Basic Atonal Theory, or
Mead, "A Practical Method.,"

8. There are 12 trichords, thus there are 12 + 11 + 10 . . . + 1 = 78
trichordal pairings, or generators.

9. In Table 2 the order of listing of the generators uses the criteria
for the listing of the dual generators of Table 1.

10. The cycle of fourths transform (M5) and the cycle of fifths
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fourths transforms for the hexachords and trichords. Hexachords that
are M5 mappings of one another have the same number of single and dual
generators, and these generators map into one another under M5. For
example, 6-1 and 6-32 are M5 mappings of one another. Each has four
single generators; those of 6-1: 12, 13, 14, 25 map respectively into
27§ 25, 375 24, of 6-32. The three dua% genera%ors of §-1: 12-152, 13-
14, 13-25° map respectively into 15-274, 25-37%, 13-25“ of 6-32. Two
generators that map into one another under M5 have the same number of
hexachords, and these hexachords map into one another under MS. For
example, the generator 12-12 maps into 27-27. Each has four hexachords
listed; those of 12-12: 6-1, 24, Z6, 7 map respectively into 6-32, Z26,
Z38, 7 of 27-27.

This concludes the introduction to the hexachord/trichord
interrelationship and its catalogs. In the following sections some
aspects of this interrelationship will be examined in more detail with a
view toward practical application. Suggested applications are for the
most part general enough in nature to allow personal adaptations.

* * % % *

Some Possibilities

Hexachord Sequences

Comparisons can be made between hexachords to determine shared
generators, which may then be used to maintain structural continuity at
the trichord level while effecting change at the hexachord level, Aan
example would be the maintenance of generator identity using a sequence
of hexachords having one or more common generators, Shared generators
can also be used to establish "modulations" between hexachords,

Example 1 shows a sequence of such "modulations" in which the initial
hexachord (6-2) returns twice via different groups of common generators,
These two types of hexachord sequences--maintenance of generator
identity, and "modulation" via shared generators--can be used
individually or in combination in structuring pitch content.

Hexachordal Hierarchies

A hexachordal hierarchy can be established by using the generators

transform (M7 yiclls the inverse of M5) are discussed in Rahn, Basic Atonal
Theory, pp. 53-55. These are multiplicative operations, mod. 12. For
example, the pc "4" under M5 maps as follows: 4 x 5 = 20; 20 mod. 12 (20
- 12) = 8. The pc mappings under M5 are: 0-0, 1-5, 2-t, 3-3, 4-8, 5-1,
6-6, 7-e, 8=-4, 9-9, t-2, e-7.

11. See Babbitt, "Since Schoenberg," for a discussion of this idea as
it relates to the all-combinatorial hexachords.
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Example 1:
Shared Generators
6-2 / 6-23 12-13, 12-16, 14-15
6-Z3 / 6-5 12-16, 13-15, 13-16

6-5 / 6-212 13-16; 15-37, 25-27

6-212 / 6-2 12-13, 14-15

6-2 / 6-236 12-16, 13-25, 13-36, 14-15
6-236 / 6-5 12-14, 12-16, 14-16

6-5 / 6-241 15-37, 16-36

6-241 / 6-2 12-26, 13-26, 14-15

of a single hexachord as reference; the more generators that a hexachord
has in common with the referential hexachord, the higher its status in
the hierarchy, or the "closer" to the referential hexachord it is
considered to be. For example, 6-20 has four generators: 143, 153, 373,
48, Four hexachords--6-24, Z26, 249, 30--have two generators in common
with 6-20; these four hexachords can be considered to have higher status
than the numerous hexachords that share only one generator with the
referential hexachord; those hexachords with no common generators will
have still lower status.

If a limited number of generators are chosen as reference, another
type of hexachordal hierarchy is established. If, for example, the
single generators 12 and 15 are chosen, the hexachordal hierarchy could
be the following:

Generators: 12 and 15

6-24, 26, 7
12 only 15 only
6-1 6-Z238, 8, 9, 14, 20, Z26

All other hexachords

variations of these forms of hexachordal hierarchy abound.
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Example 2:

Type 6-1
4 X X 12-12
X X 12-12
3+1 X X 12-12
X Y 12-15
2+2 X X 12-12 OR X Y 12-15
Y X 13-13 Y X 15-12
2+1+1 X X 12-12 OR X Y 14-13
Y Z 13-25 Y 2 13-25
1+141+41 X Y 12-15
W Z 13-14

The Trichordal Mosaic

The term "trichordal mosaic" is used here to indicate a group of
four trichords that combine to produce an aggregate.12 The distribution
of the four trichords will be one of five types; from maximum similarity
to maximum diversity, these are: 4, 3 +1, 2+ 2, 2+ 1+ 1, and 1 + 1 +
1 + 1. Example 2 shows the trichordal distribution types and
illustrates how they may be derived from 6-1; W, X, Y, and 2 represent
trichord types. Note: a number of hexachords do not have a "single"
generator (6-15 and 6-16, for example) and are thus limited in the ways
they may be used in these mosaic constructions.

The Hexachord Families of the Trichordal Mosaic

The product of the combination of vertical pairs of trichords or
diagonal pairs of trichords in a mosaic will either be the original
hexachord(s) (Exx. 3a and 4b), or a pair of "derived" hexachords.
Derived hexachords will always be either a dual representation of a
single, non-Z-pair hexachord (BExx. 3b and 4a) or a pair of Z-related
hexachords (Exx. 3c and 4c) because the derived hexachords are
necessarily complementary.

The triangular relationship of the horizontal, vertical, and
diagonal hexachords of a mosaic can be represented as in Example 5a.

12, Martino uses the term "mosaic" to designate some equal-element
division of the 12 pcs, mostly discussing the "trichordal mosaic" and
the "tetrachordal mosaic," More generally, the term designates any
distribution of the 12 pcs. Non-aggregate producing combinations of
collections are discussed by Robert Morris in "Combinatoriality Without
the Aggregate," pPerspectives of New Music 21/1-2 (1982-83): 432-86.

13. The term "derived hexachords" is adapted from the term "derived
harmonic set" in Martino, "Source Set,"
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Example 3: perived vertical Hexachords
a) b) c)
6-14: 015 348 6-14: 015 348 6-14: 015 348
6-14: _9i2 6ie 6-14: 67t 9e2 6-14: O9te 267
6-14 6-14 6-18 6-18 6-237 6-Z4
Example 4: Derived Diagonal Hexachords
a) b) c)
- -14 6-238
6-18 )'6 1 o
6-14: 015 348 6-14: 015 348 6-14: 015 348
6-14: 9Qe2 67t 6-14: 67e 9t2 6-14: 9te 267
' RN
6-18 6-14 6-26
Example 5
a) b)
6~2 @v@ 6-238 6-14 @-@ 6-7
62| o (e[ [625 | [6-14]a e Yo7 | 67
6-5 6-5 6-14 6-14
c)
6-24 |~ (12_Tose) | 6-24
6-237 @.@ 6-237

6-Z4

|6-237
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The component trichords can be swapped in any manner and the same three
hexachords will always result, although their positions within the
triangle will vary. Two, or even all three (rare) of the resultant
hexachords may be the same (Exx, 5b and 5c¢, p. 25).

There are 3081, 0r 1 + 2 + 3 ...+ 78 trichordal generator
pairings, but there are considerably fewer "real" pairings because not
every one of the 3081 is available.14 Although it would be a long
document, a "master" graph of the mosaic families could be produced. It
would have the 35 aggregate producing hexachord pairs as one axis and
the possible generator pairs as the other, with individual generator
pairs repeated as necessary to accommodate all of the three-member
hexachord families for any given generator. Graph Y is the beginning of
this "master" mosaic graph. The three vertical dots indicate omissions
in the generator pair listing. The generator pair [0,1,5]-[0,1,5] +
[0,1,5]-[0,1,5] is included to illustrate the repetitions required for
some generator pairs. In Graph Y the possibility of "modulations"
between mosaics is readily apparent. All that is required for such a
modulation is that one of the three resultant hexachords of a given
generator pair is produced by another generator pair, and that these two
generator pairs share at least one trichord. Up to four trichords can
be used as the pivot point. Three such modulatory pivot points are
circled in Graph Y. (It would be useful in such a graph to be able to
indicate from which hexachord pairs the generators as listed can be
derived.)

Example 6 shows a shorthand notation suggested by Andrew Mead for
the resultant hexachords of a trichordal mosaic,'® (This is a

representation of Ex. 5a.) If the generators are already known to the
users, this part of the notation may be omitted.

Example 6:

12-16

16-12 R&—2

6-5 6-26/38

14. For example, the generator pairing 12-12 + 12-13 has no reality in
the universe of aggregate producing hexachord pairs. Examining Table 2,
P. 1, it can be seen that, for any of the hexachords produced by the 12-
12 generator, there is no complementary hexachord produced by the 12-13
generator., Thus 12-12 + 12-13 is not a "real" generator pairing,

15. In conversation with this author.
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Example 7:

6-5 6-Z26/238 6-2 6-26/238 6-5 6-2 6-26/238 6-5

Mosaic Uses

In reviewing Example 5a, a musical projection of the three
hexachords of the mosaic might be the following: horizontal hexachords--
registral separation, vertical hexachords--temporal proximity, and
diagonal hexachords--orchestration., As suggested earlier, rotation of
the four trichords maintains the resultant hexachords, but might suggest
different musical projections., Some of the results of trichordal
rotation as applied to Example 5a are shown in Example 7 using shorthand
notation,

Another strategy for pitch structure might be the maintenance of
one of three hexachords of a mosaic while varying the others. 1In
Example 8, the horizontal hexachord (6-2 from Ex. 5a) continues from
aggregate to aggregate while the vertical and diagonal hexachords
change; different generators are chosen for the horizontal statements of
6-2 in each of the aggregates., Each aggregate might represent any
number of the same mosaic, with changes of pitch class being effected by
TTOs. For example, a sequence of transpositions may be applied to the
first mosaic before progressing to the next mosaic, and so on,

Example 8:

6-26 6-238 6-1 6}1 6-242 6-213
6-2—p 234 016 :0}2 3?6 :1?6 0%3———»6—2
[
6-2—pteS 789 :578><9te =89e><57t-—-—-r6—2

| Lo

6-5 6-5 6-18 6-18 6-32 6-32
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Table_&

Table 4 lists the identity/complementation properties for the
hexachords; if a hexachord is not included, it does not exhibit any of
these properties, other than Tn=T0, where n=0, which is true for every
hexachord. The meanings of the four columnar headings are as follows:
Tn=Compl.--a hexachord can be transposed into its complement,
TnI=Compl.--a hexachord can be inverted and then transposed into the
complement of the original form of the hexachord, TnI=T0--a hexachord
can be inverted and then transposed into the original form of the
hexachord. The entries in the columns of the properties represent 'n'
in each case, For example, in the Tn=Compl. column, 6-1 lists the
number 6; if a projection of 6-1, {0,1,2,3,4,5}, is transposed by 6
half-steps the result is the complement {6,7,8,9,t,el.

If aggregate producing hexachordal combinatoriality16 is viewed as,
very simply, the combination of some transpositional/inversional form of
a hexachord with its complement, then given the columnar classifications
of Table 4 the combinatorial relationship of maximum pc redundancy may
be defined as follows:

(Tn, = Tn,I) + Compl.Tn, = Tn,I) = Aggregate,
where n, , are transposition variables.

The hexachords that satisfy this statement are the all-combinatorial
hexachords; they all have at least one entry for each column of Table 4,
(For ™n=T0, n=0 for every hexachord.,) Two sub-properties of this
maximum pc redundancy relationship are the cases where a hexachord
combines with (1) a transposition of itself, or (2) with some
transposition of an inversion of itself to produce an aggregate. Stated
as before, these are:

Sub-property I (Prime Combinatoriality)

™, + COmpl.(Tnz) = Aggregate
Members: 6-14

Sub-property II (Inversional Combinatoriality)

™, + Compl.(Tnzl} = Aggregate
Members: 6-2, 5, 9, 15, 16, 18, 21,

22, 27, 30, 31, 33, 34

16. Hexachordal combinatoriality is discussed in numerous sources, The
reader might consult the articles by Babbitt and Morris and Starr cited
in n. 1 above,
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For 6-14 (sub-property I), 6-30 of sub-property II, as well as the all-
combinatorial hexachords, at least two transpositions of the same form
of the hexachord contain the same pcs, This reduces the number of
unique aggregate producing hexachord pairings for these hexachords from
the maximum twelve,’ The equivalent pairings are at a distance of some
interval that divides the chromatic into equal sized units of
consecutive pcs.1 For example, with 6-1 the equivalent pairings are a
tritone apart, thus reducing the number of unique aggregate producing
pairings by one-half, from 12 to 6. The more pc equivalent forms of a
hexachord there are, the fewer unique aggregate producing pairings there
will be. For example, 6-20 has three equivalent transpositions of each
form that are major thirds apart--dividing the chromatic into three
equal units of four consecutive pcs: 12 / 3 = 4 unique hexachords and
only two unique aggregate producing hexachord pairings. This redundancy
can be used to advantage to create pitch structures like Example 9 (p.
30). In this example the transpositions of the Z-pair are derived from
6-Z6. Note that these transpositions reflect the transpositions of 6-20
that are pc equivalent: TO, T4, T8; T1, T5, T9; T2, T6, Tt; and T3, T7,
Te.

Returning for a moment to Table 4, there are 14 hexachords that are
not members of the categories discussed so far, They form a group with
the following characteristics: (1) each hexachord exhibits TnI = TO--
each can be inverted into itself at some transposition; (2) each
hexachord is a member of a Z-pair--7 pairs in all, As before, this
produces a reduction in the number of unique aggregate producing
hexachord pairings--in this case, Z-pairings. For example, for 6-24/37
there are two pc equivalent hexachord pairings: 6-%Z4,T0: {0,1,2,4,5,6} +
6-%37,77: {7,8,9,t,e,3} is pc equivalent to 6-%4,T6I: {6,5,4,2,1,0} +
6-237,TeIl: {e,t,9,8,7,3}. This redundancy reduces the total number of
unique aggregate producing hexachord pairings by one-half from 24 to 12.

17. For each hexachord there are 48 forms: 12 prime, 12 retrograde, 12
inversional, and 12 retrograde inversional, For each hexachord T0 = RTn
for at least one value of n, and TOI = RTnI for at least one value of n;
this equivalence of forms reduces the total of 48 by one-half to 24.

For hexachords that are retrograde combinatorial only (Z3/36, 2Z10/39,
Z11/40, 212/41, 217/23, 219/44, Z24/46, Z25/47) 24 is the number of
unique aggregate producing hexachord pairs, as there are 12 prime and 12
inversional forms for each half of the Z-pair, For all other hexachords
there are at least two aggregate producing hexachord pairs that are pc
equivalent, thus further reducing the unique pairings by at least one-
half to 12. As described in the text that follows, some hexachords have
even fewer unique aggregate producing hexachord pairings.

18. See the discussion of "cliques" in Morris and Starr, "General
Theory of Combinatoriality."
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Example 9:

6-20,TO: 015 489 — 459 801 —» 891 045

6-20,T2: 267 te3 —= 6te 237 —» t23 67e

TO:6-26 6-Z38 T4:6-Z6 6-238 T8:6-Z6 6-738

6-20,T1: 126 59t —* 56t 912 —® Qt2 156
6-20,T3: 378 e04 —» 7e0 348 —» e34 780

T1:6-Z6 6-Z38 T5:6-26 6-238 T9:6-26 6-238

6-20,T2: 237 6te —» 67e t23 —» te3 267

6-20,TO: 489 015 —= 801 459 —» 045 891

T2:6-Z6 6-Z38 T6:6-26 6-7238 Tt:6-Z6 6-238

6-20,T3: 348 7e0 —» 780 e34 —» e04 378

6-20,T1: 590t 126 —= 912 56t —® 156 9t 2
T3:6-26 6-Z38 T7:6-Z6 6-238 Te:6-Z6 6-Z38

Example 10:

a) b) c) d)

1:2 12 12 12
6/\6 6/\6 6/\6 5/ \7
™ N /\ /\ FX.. P /\ 7
3 3 3 3 4 2 2 4 5 1 1 5 4 1- 3 4

' R4 \ K N/
4 4 4 6 6 4 4 4
Mgl A L S
12 12 12
Conclusion

This entire presentation has focused on only one manifestation of a
larger concept: that of set/subset or collection/sub-collection. 1In the
viewpoint taken here the aggregate divides into two hexachords, each
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of which in turn divides into two trichords (Ex. 10a). But what about
other ways of dividing the aggregate? Examples 10b, 10c, and 10d show
some other possible divisions of the aggregate with some possible
recombinations that could serve to establish collectional relationships,
All of these examples are based on use of the total chromatic, but what
about using something less than the aggregate as reference?'? The
relationships between and among such collections and sub-collections are
as fixed and knowable as those presented here for the
aggregates/hexachords/trichords. The integer model of pitch, with its
accompanying alphanumeric representation, allows an ease of discovery
and a precision in cataloging these relationships--relationships that
yield multiple visions of an unchanging chromatic universe.

* * & % *

Some Definitions

These definitions purposely employ a rather casual language., For
more formal definitions, including theorems and proofs, of these and
other elements of atonal theory the reader is invited to consult either
or both of the following: Rahn, Basic Atonal Theory; Forte, Structure
of Atonal Music. For a "practical method for dealing with unordered pc
collections” see Mead, "A Practical Method."

pitch class (pc). All enharmonically equivalent pitches (for example,
all C#s, Dbs, etc,) are members of the same pitch class. The term was
coined by Milton Babbitt,

aggregate. An aggregate is a representation of the total chromatic--all
12 pcs.

alphanumeric pitch notation., The use of numbers and letters to
represent pcs, If C is arbitrarily set = 0, then an ascending chromatic
scale would read: 0,1,2,3,4,5,6,7,8,9,t,e with t =10 and e = 11
representing Bb and B respectively. The letters A and B are sometimes
used to represent 10 and 11, or Bb and B, if C = 0.

collection. An unordered group of pcs.

collection class. Any group of unordered pcs that are equivalent under
transposition and/or inversion are representatives of the same
collection class. For example, {C,Db,Eb}, {F,Gb,ab}, {D,E,F}, {Eb,Db,Cl},
and {Db,C,Eb} are members of the same collection class. A collection
class is represented, using square brackets, as follows: [0,1,3].

(Each of the groups of pitches above belong to the [0,1,3] collection
class.) Collection classes are presented in prime form, with pecs packed
as closely as possible from left to right, ascending within the octave
above one member of the collection which is initialized = 0., For pcs,
the size of a collection class may be from 0 to 12 elements, although 0
elements = null set, and 12 elements = aggregate, Collection classes of
2, 3, 4, and 6 elements (dyads, trichords, tetrachords, and hexachords

19. See Morris, "Combinatoriality Without the Aggregate,"
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respectively) allow a division of the aggregate into equal-size groups
of pcs, and so hold a particular fascination for musicians,
complementation. Within the total chromatic (all 12 pcs), the remaining
pcs not included in a collection are the complement of that collection,
interval class (ic). 1Intervals of the same size (3 semitones or minor
third, for example) and their inversions (9 semitones or major sixth =
inversion of 3 semitones) are considered to be equivalent and belong to
the same interval class, The 6 ics are:

ic 1 1 semitone, 11 semitones
ic 2 2 semitones, 10 semitones
ic 3 3 semitones, 9 semitones
ic 4 4 semitones, 8 semitones
ic 5 5 semitones, 7 semitones
ic 6 6 semitones
Ics are unordered, denoting no direction between pcs: (C,Eb} = {Eb,C}

= ic 3.

interval vector. When all the ics of a collection are tabulated,
collated according to ic size, and displayed from left to right in order
of ascending ic size, the result is the interval vector. For example,
the collection class [0,1,3]--say {C,Db,Eb}--has an interval vector of
<1,1,1,0,0,0>. This means there is one ic 1-- {C,Db}, one ic 2--{Db,Eb} ,
one ic 3--{C,Eb}, and no cases of ic 4, 5, or 6. This term is Allen
Forte's,

Z-related collection classes--sometimes called Z-pairs. This term was
coined by Allen Forte to designate a pair of collection classes that
have the same interval vector but are not equivalent under transposition
and/or inversion. Hexachords that are Z-related are complementary. For
example, [(0,1,2,3,5,6] and [0,1,2,3,4,7] are Z-related hexachords;
extracting {0,1,2,3,5,6} from the total chromatic leaves {4,7,8,9,t,e}
which is 1{0,1,2,3,4,7) inverted and transposed.

all-combinatorial hexachords. The following description is John Rahn's:
The "all-combinatorial™ hexachords fulfill each of the four criteria for
the four kinds of hexachordal combinatoriality. They must: (1) map

into themselves under Tn ("retrograde combinatoriality"); (2) map into
themselves under TnI ("retrograde inversional combinatoriality"); (3)
map into their complements under Tn ("prime combinatoriality”); (4) map
into their complements under TnI ("inversional combinatoriality"). The
first two criteria mean transpositional and inversional symmetry,
(Conditions 3 and 4 entail that the hexachord and its complement cannot
be "Z-related.") Every hexachord satisfies (1) under TO. To discover
which of the four kinds of combinatoriality some given hexachord
possesses, and for which operations, you need only apply the common-tone
theorems. (A hexachord maps into itself with 6 pcs in common; it maps
into its complement with 0 pcs in common.)

Oonly six hexachord types satisfy all four criteria. Three
hexachord types satisfy all criteria for 'one' value of "n" each; these
are called (following Milton Babbitt) "first-order all-combinatorial."
The “"second-order all-combinatorial hexachord type" satisfies all four
criteria for 'two' values of "n" each; the "third-order" for 'three’
values of "n" each; and the "sixth-order" (sometimes called the "fourth-
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order") for 'six' values of "n" each. They are:

a. [0,1,2,3,4,5]
first-order {b. [0,2,3,4,5,7]
c. [0,2,4,5,7,9]
second-order d. (0,1,2,6,7,8]
third-order e. [0,1,4,5,8,9]
sixth-order f. (0,2,4,6,8,t]

(Basic Atonal Theory, pp. 117-18). The four criteria are further
discussed in connection with Table 4 of the present paper.
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Table 1 - p. 1
Hex. Prime Interval Single Dual
Form Vector Generators Generators
[A] 1 012345 543210 12,13,14,24 12-15*, 13-147, 13-25°
2 012346 443211 14 12-13, 12-16, 12-26, 13-24, 13-25,
13-26, 13-36, 14-15, 24-25
r Z3 012356 433221 25 12-13, 12-16, 13-14, 13-15, 13-16,
14-15, 14-36, 15-25, 24-26
| 236 012347 433221 12-14, 12-16, 12-37, 13-25, 13-27,
13-36, 13-37, 14-15, 14-16, 24-26
" Z4 012456 432321 12,14,15,25 13-16", 14-267, 15-24°
| 237 012348 432321 12-15", 12-48, 13-26", 13-377,
14-16", 24-27
5 012367 422232 26 12-14, 12-16, 13-15, 13-16, 14-16,
15-16, 15-37, 16-36, 25-27
Z6 012567 421242 12,15,16,26 14-16%, 15-27°, 16-25"
[ 238 012378 421242 15,16,26,27 12-15*, 13-16", 16-37"
[D] 7 012678 420243 12,15%,16%,27 16-264
[B] 8 023457 343230 13,15,24,25 12-277, 13-37%, 14-25°
012357 342231 15 12-24, 12-27, 13-16, 13-25, 13-26,
14-37, 16-25, 24-27, 25-26
[ Z10 013457 333321 13 12-16, 13-27, 14-15, 14-24, 14-26,
14-37, 15-26, 24-37, 25-36
| 239 023458 333321 12-26, 12-37, 13-14, 13-37, 13-48,
14-36, 15-16, 15-25, 24-25, 25-26
- Z11 012457 333231 12-13, 13-16, 13-27, 14-25, 14-27,
14-37, 15-16, 15-25, 24-26, 25-36
| Z40 012358 333231 12-25, 12-37, 13-15, 13-36, 13-37,
14-37, 15-16, 16-25, 24-26, 25-27
Z12 012467 332232 12-13, 13-16, 14-15, 15-37, 16-247,
16-25, 16-26, 25-27, 26-36
Z41 012368 332232 16 12-25, 12-26, 13-26, 13-27, 14-15,
15-37, 16-36, 25-26, 26-27
Z13 013467 324222 13,14,26,36 13-16", 14-16", 25-37°
[ Z42 012369 324222 14,16,25,26 12-367, 13-377, 15-36°
14 013458 323430 15 12-15, 13-14, 13-37, 14-25, 14-377%,
15-27, 24-48, 25-37
15 012458 323421 12-14, 13-15, 13-37, 14-26, 14-36,
14-48, 15-16, 15-26, 24-37, 25-37
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Table 1 - p.
Hiist’ Prime Interval Single Dual
Form Vector Generators Generators
16 014568 322431 12-15, 13-14, 14-16, 14-26, 15-24,
15-27, 15-48, 16-37, 25-37, 26-37
Z17 012478 322332 12-14, 13-15, 14-16, 15-25, 16-24,
16-26, 16-37, 16-48, 26-36, 27-37
Z43 012568 322332 16 12-13, 14-15, 14-26, 15-26", 15-37,
16-36, 25-27, 26-37
18 012578 322242 26 12-13, 14-15, 15-16, 15-25, 16-25,
16-27, 16-36, 16-37, 27-37
zZ19 013478 313431 37 13-14, 13-15, 14-15°, 14-16, 15-16,
26-48, 27-37, 36-37
244 012569 313431 14 12-14, 14-36, 15-16, 15-25, 15-377,
16-37, 25-37, 26-48
[E] 20 014589 303630 14%,15%,37%,48
21 023468 242412 12-26, 13-24, 13-26, 14-26, 14-48,
15-26, 16-26, 24-25, 24-37, 26-36
22 012468 241422 12-24, 13-26, 14-26, 15-24, 15-48,
16-26", 24-27, 25-26, 26-37
" 223 023568 234222 13,16,25,36 13-26", 14-37%, 25-26°
| Z45 023469 234222 12-36, 13-25%, 14-37%, 16-267,
24-367, 27-36
[~ 224 013468 233331 13-15, 13-24, 13-26, 14-25, 14-27,
15-16, 25-37, 25-48, 26-27, 36-37
| 246 012469 233331 25 12-25, 13-36, 14-24, 14-37, 15-26,
15-37, 16-27, 24-37, 26-37
[~ Z25 013568 233241 13 13-15, 15-25, 15-37, 16-25, 16-27,
24-26, 25-27, 25-37, 36-37
L Z47 012479 233241 12-25, 13-25, 14-25, 14-27, 15-37,
16-27, 16-37, 24-26, 25-36, 27-37
- 226 013578 232341 13,15,27,37 15-247, 16-25°, 26-37°
| Z48 012579 232341 12-24, 14-25%, 15-277, 16-377,
25-26", 27-48
27 013469 225222 16,26 13-14, 13-25, 13-36, 14-36, 14-37,
25-36, 25-37, 36-37
z228 013569 224322 13-14, 15-367, 16-26", 24-36,
25-377, 36-48
Z49 013479 224322 14,16,36,37 13-25%, 14-26", 26-37°
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Table 1 - p. 3

Hex. Prime Interval Single Dual
Form Vector Generators Generators
Z29 013689 224232 13,16,26,37 14-25%, 15-36", 27-36"
[ Z50 014679 224232 25,26,36,37 13-14*, 16-257, 16-37°
30 013679 224223 13,14,25,37 16-26", 16-367, 26-36"
31 013589 223431 13-14, 14-24, 14-25, 15-16, 15-25,
15-26, 26-37, 27-37, 36-37, 37-48
[C] 32 024579 143250 24,25,27,37 13-25*, 15-27°, 25-37°
33 023579 143241 37 13-24, 13-25, 15-37, 16-27, 24-25,
25-26, 25-27, 25-36, 26-27
34 013579 142422 13-24, 14-24, 15-26, 16-26, 24-25,

25-26, 26-27, 26-36, 26-37, 37-48

[F] 35 02468t 060603  24°,26°,48
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Generator Hexachord Generator  Hexachord

12-12 1, Z4, 26, 7 14-14 1, 2, Z4, Z13, 742, Z44,

12-13 2, 23, Z11, 212, Z43, 18 203, 749, 30

12-14 236, 5, 15, Z17, Z44 14-15 2, 23, 236, Z10,

12-15 12, 2372, 2382, 14, 16 z12, Z41, 43, 18, Z19°

12-16 2, 23, 736, 5, Z10 14-16 z36, 2372, 5, 262, 7132,

12-24 9, 22, 748 16, 217, 219

12-25 Z40, Z41, Z46, Z47 14-24 210, 246, 31, 34

12-26 2, 239, z41, 21 14-25 82, 711, 14, 224, 247,

12-27 8%, 9 z48%, 7292, 31

12-36 2422, 745 14-26 242, 210, 15, 16, 743,

12-37 236, 239, Z40 21, 22, 249°

12-48 237 14-27 211, 724, 747

13-13 1, 8, 210, 713, 223, 14-36 23, 239, 15, Z44, 27
225, 226, 229, 30 14-37 9, 210, Z11, 740, 142,

13-14 12, 73, 739, 14, 18, 2232, 745%, 746, 27
219, 27, 2282, 2502, 31 14-48 15, 21

13-15 z3, 5, z40, 15, 217, 15-15 z4, 26, 238, 72, 8, 9,
Z19, 724, 225 14, 20°, 226

13-16 z3, 242, s, 2382, 9, 15-16 5, 239, Z11, 240, 15,
211, 212, 7132 18, Z19, Z44, 724, 31

13-24 2, 21, 224, 33, 34 15-24 242, 16, 22, 7262

13-25 12, 2, 236, 9, 2452, 15-25 73, 239, z11, 717, 18,

' 247, 27, z49%, 322, 33 Z44, 725, 31

13-26 2, 2372, 9, z41, 21, 22, 15-26 10, 15, z43%, 21, z46,
2232, 724 31, 34

13-27 236, 210, Z11, Z41 15-27 262, 14, 16, 2482, 322

13-36 2, 236, 240, 246, 27 15-36 2422, 7282, 7292

13-37 236, 2372, 8%, 239, 240, 15-37 5, 212, 741, Z43, ‘244°,
2422, 14, 15 746, 225, 247, 33

13-48 239 15-48 16, 22

37
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Table 2 - p. 2

Generator _ Hexachord

16-16 26, 238, 7%, 241, Z42,
243, 223, 27, 249, 229

16-24 z122, 217

16-25 262, 9, 40, Z12, 18,
225, 2262, 250°

16-26 7%, 212, 217, 21, 222,
z45%, 7282, 302, 34

16-27 18, Z46, 225, 747, 33

16-36 5, Z41, Z43, 18, 30°

16-37 2382, 16, 217, 18, Z44,
247, 7482, 7502

16-48 Z17

24-24 1, 8, 32, 35°

24-25 2, 239, 21, 33, 34

24-26 23, 736, Z11, 240,
225, 747

24-27 37, 9. 22

24-36 2452, 728

24-37 210, 15, 21, Z46

24-48 14

25-25 Z3, 4, 8, 242, 223, 746,
Z50, 30, 32

25-26 9, 239, z41, 22, 2232,
z48%, 33, 34

25-27 5, 240, Z12, Z43, 725, 33

25-36 z10, 211, 247, 27, 33

25-37 2132, 14, 15, 16, z44,

25-48

724, 225, 27, 2282, 322

224

Generator

Hexachords and Their Trichordal Generators

Hexachord

26-26

26-27
26-36
26-37

26-48
27-27
27-36
27-37
27-48
36-36
36-37
36-48
37-37

37-48
48-48

5, 26, 738, Z13, 742, 18,
27, 229, 250, 35°

Z41, 224, 33, 34

712, 217, 21, 302, 34

16, 43, 22, 246, 7262,

7492, 31, 34

Z19, Z44
238, 7, 726, 32

245, 729°

217, 18, 219, Z47, 31
748

Z13, 223, 249, 250
219, Z24, 225, 27, 31
728

219, 20°, 226, 249,
229, 250, 30, 32, 33
31, 3

20, 35




Table 3: M5 Mappings

Hex. Mapping

[A] 1 32
2 33
Z3 Z25
Z36 Z47
Z4 Z26
zZ37 Z48
5 18
Z6 Z38
238 Z6

[D] 7 7

[B] 8 8
9 9
Z10 Z46
Z39 Z24
Z11 Z40
Z40 Z11
212 Z12
241 Z41
Z13 Z50
242 229
14 14
15 31
16 16
Z17 Z17
Z43 Z43
Trichord Mapping
[0,1,2] [0,2,7]
[0,1,3] [0,2,5]
[0,1,4] [0:3;7]
[0,1,5] [0,1,5]
[0,1,6] (0,1,6]
[0,2,4] [0,2,4]
[0,2,5] [0,1,3]
[0,2,6] [0,2,6]
[012!7] [0,1,2]
[0,3,6] [0,3,6]
[0,3,7] [0,1,4]

[0,4,8] [0,4,8]
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Hex. Mapping
18 5
Z19 Z44
244 Z19
[E] 20 20
21 34
22 2.2
723 223
Z45 Z45
Z24 Z39
Z46 Z10
Z25 Z3
z247 Z36
226 Z4
748 Z37
27 27
[~ 728 228
| Z49 Z49
" 229 242
L Z50 Z13
30 30
31 )
[C] 32 1
33 2
34 21
[F] 35 35

Self-Mapping Trichords:
15, 16, 24, 26, 36, 48

Others map as follows:

I S
R
Vst 37
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Graph ¥

Hexachordal Families of the Trichordal Mosaic--Beginning Only
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Hex.

Table 4:

Tn=Compl.

Identity/Complementation Properties

TnI=Compl.
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Tn=TO *

TnI=TO

[A] 1

6

11

11

Z4

Z37

11

26

238

[D] 7

[B] 8

Z13

742

14

15

11

16

18

11

2,6,10

3,7,11

[E] 20
21

22

11

. Z45

— 7226

248

(3N [0 ] (o} [04]

11

~ 728

| Z49

— 229

| 250

Ll Ko Fod [o)

31

[C] 32

[F] 35

(University of utah)
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